BCH714: Computational Systems Biology Minicourse 2025:

The Program:

28/03 Friday	07/04 Monday	08/04 Tuesday
09:30 Research lecture DvN	9:00 Group I (First set of experiments)	9:00 Group I (Second set of experiments)
I I:00 Introduction to Practical JLS & KS	I 3:00 Group 2 (First set of experiments)	Group 2 (Data analysis) JLS & DvN
	Group I (Data analysis) JLS & DvN	13:00 Group I and 2 (Data analysis) JLS
9/04 Wednesday	10/04 Thursday	II/04 Friday
9:00 Group 2 (Second set of experiments	09:30 Research lecture JLS	09:30 Data analysis (whole day) / Redo experiments DvN
Group I (data analysis) JLS & DvN	I 1:00 Data analysis / Redo experiments JLS & DvN	
13:00 Data analysis / Redo experiments JLS & DvN		
14/04 Monday	I5/04 Tuesday	
9:30 Data analysis (whole day) DvN	Hand in final report (15/04/2025) at 23:59	

GROUPS:

IA

- Alexander Peters
- Chloe de Fondaumiere

IΒ

- Jahno Bester
- Skylah Esterhuizen

IC

- Ruan Heyns
- Luan Swart

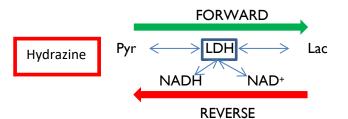
ID

- Milla van der Merwe
- Zainab Osman

2A

- Cameron CrawfordNoah Bauer
- 2B
 - Likhona Mbuzi
 - Amaya Lakmeeharan

2C


- Nazier Dodgen
- JC Shefferlie

2D

- Oliver Faure
- Hannah Catto
- Jano Bezuidenhout

ABOUT THE PRAC:

(I) Characterise the enzyme:

(2) The experiments:

Experiment I:

GROUP A

- Reverse direction
- Varying [NAD+]
- Same [Lac] + [LDH] + [Hydrazine]

GROUP B

- Reverse direction
- Varying [Lac]
- Same [NAD⁺] + [LDH] + [Hydrazine]

GROUP C

- Forward direction
- Varying [NADH]
- Same [Pyr] + [LDH]

GROUP D

- Forward direction
- Varying [Pyr]
- Same [NADH] + [LDH]

Experiment 2:

GROUP A

- Product Inhibition: NADH
- Varying [NADH]
- Same [Lac] +[NAD+] + [LDH] + [Hydrazine]

GROUP B

- Without Hydrazine
- Varying [Lac]
- Same [NAD+] + [LDH]

GROUP C

- Product Inhibition: NAD+
- Varying [NAD+]
- Same [Pyr] + [NADH] + [LDH]
- GROUP D
 - Product Inhibition: Lac
 - Varying [Lac]
 - Same [NADH] + [Pyr] + [LDH]

(3) An enzyme assay:

a- Pipette metabolites into the cuvettes, the reaction is initiated by the addition of the enzyme, LDH.

b- Once the enzyme is added, measure the absorbance readings for the reaction over a period of 3 mins.

c- The types of data we expect to see - Forward reaction: decreasing Abs; Reverse reaction: increasing Abs

(4) What needs to be done:

<u>Create a pipetting schema so that we investigate 10 different concentrations around the Km values. Take the following into consideration:</u>

Km		Stock concentrations	
Km(NADH)	= 0.03 mM	[NADH]	= I mM
Km(NAD⁺)	= 0.5 mM	[NAD]	= 20 mM
Km(Pyr)	= I mM	[Pyr]	= 20 mM
Km(Lac)	= 10 mM	[Lac]	= 500 mM

b - <u>Volumes</u>:

- The total cuvette volume is 1 mL.
- If you are doing reverse direction experiments (only) 100 µL of the 1 ml is Hydrazine (Stock is 25%, final concentration should be 2.5%).
- 50 μL for the forward direction and 100 μL for the reverse direction, of the total volume is LDH (Stock is 10 U/mL, final concentration in cuvette for the forward direction is 0.5 U/mL and reverse direction 1 U/mL.
- The other volumes are of the substrate and co-factor which you calculated in the pipetting schema.
- Lastly, the remaining volume to make up this I mL volume is done by adding buffer to the cocktail mixture.

c - The ten substrate concentrations:

The range you are going to investigate is between Km/10 and 10 x Km and the fixed substrates are usually at saturating conditions i.e. 10 x Km (unless instructed otherwise). Use Excel to create an incremental pipetting schema.